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An Optimal Branch-and-Bound Procedure for the
Constrained Path, Moving Target Search Problem

by

James N. Eagle
Department of Operations Research

Naval Postgraduate School
Monterey, CA 93943

James . Yee
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ABSTRACT

A search is conducted for a target moving in discrete time among a finite number of cells according to
a known Markov process. The searcher must choose one cell in which to search in each time period. The set
of cells available for search depends upon the cell chosen in the last time period. The problem is to find a
search path, i.e., a sequence of search cells, that maximizes the probability of detecting the target in a fixed
number of time periods. Closely following earlier work by Theodor Stewart, a branch-and-bound procedure
is developed which finds optimal search paths. This procedure is tested and appears to be more efficient
than existing dynamic programming solution methods.
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Constrained Path, Moving Target Search Problem

by
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James B. Yee
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

A searcher and target move among a finite set of cells C = 1, 2, ..., N in discrete time. At the beginning
of each time period, one cell is searched. If the target is in the selected cell i, it is detected with probability
qi. If the target is not in the cell searched, it can not be detected during the current time period. After
each search, a target in cell j moves to cell k with probability Pjk. The target transition matrix, P = [pjt]
is known to the searcher. The searcher's path is constrained in that if the searcher is currently in cell i, the
next search cell must be selected from a set of neighboring cells Ci. (The set Ci is also those cells from which
i can be reached.) The object of the search is to minimize the probability of not detecting the target in T
searches.

1. Background

The path constrained search problem, described above, is a difficult one to solve efficiently. Trummel and
Weisinger (1986] showed that the path constrained search problem with a stationary target is NP-complete.
The moving target problem, which is a generalization of the stationary target problem, is easily shown to
be at least as difficult.

The only optimal solution technique mentioned in the literature for this problem has been the dynamic
programming procedure of Eagle (1984a]. Although this method can solve problems much more quickly than
can total enumeration, it can require a large amount of computer storage as problem size increases.

There have been several approximate solution procedures suggested for this problem. The first such
method proposed was a branch-and-bound method by Stewart (1979] and [1980]. Stewart's bounds were
obtained by solving an integer problem without path constraints. The solution to this simpler problem was
obtained using a discrete version of the moving target search algorithm given by Brown (1980]. However,
Brown's algorithm does not necessarily give optimal solutions when search effort is discrete, so these "bounds"
are only approximate and can result in an optimal branch of the enumeration tree being mistakenly fathomed.
Nonetheless, Stewart's computational experience with 1-dimensional search problems indicates that the
method can perform well.

Another approximate procedure was given by Eagle (1984b]. This dynamic programming method uses
a moving or "rolling" time horizon that greatly reduces computer storage requirements. It was used to
approximately solve a small 2-dimensional problem (3 by 3 search grid) for 40 time periods. This procedure
generalizes myopic search by selecting the next cell to be searched under the assumption that the search
ends m time periods in the future. For myopic search, m is 1. For small enough m, this procedure can be
implemented on a microcomputer.
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Reported here is an optimal solution method which appears to perform more efficiently than the existing
optimal dynamic programming procedures. This work is a direct continuation of that of Stewart [1979]. The
approximate bound in Stewart's branch-and-bound procedure is replaced with a true lower bound, thus
guaranteeing optimal solutions. The true bound is obtained by relaxing the integer problem in a manner
first suggested by Stewart [1979]. The branch-and-bound procedure is made computationally feasible by
special structure in the relaxed problem which allows for its efficient solution.

2. The Relaxed Problem

The procedure presented here depends critically on the efficient solution of a convex nonlinear program,
here called the related problem or RP. The relaxetd problem, introduced by Stewart [1979], allows infinite
divisibility of search effort over a subset of the search cells, while choosing this subset properly to maintain
a representation of path constraints. Following Stewart, let z(i,j,t) be the amount of search effort that is
redistributed from cell i in time period t to cell j in time period t + 1. And let X(i, t) be the total search
effort in cell i at time t. Then,

X(i,t) = E z(k,i,t- 1), t=1,2,...,T and i=1,...,N.
I, kEC

The searcher's initial search effort distribution is X(i, 0), and is assumed to be specified. For a single searcher
(our assumption here), we additionally require X(i, 0) = 1 if i is the searcher's starting cell, and X(i, 0) = 0
otherwise.

An exponential detection function is assumed for RP. That is, if the search effort in cell i at time t is
X(i, t), then the probability of detecting the target during that search is 1 - exp(-aiX(i, t)). The term ai
is selected so that 1 - exp(-ai) = qi. This insures that integer solutions for R? have the correct objective
function values. To keep ai finite, we require qi < 1. Additionally we let w = (w(1),w(2),... ,w(T)) be
a sample target track, and p, be the probability that the target follows that path. Finally, the set of all
possible target paths is Q.

The optimal search flows x(i, j, t) for RP are obtained by solving the following nonlinear program:

b", T

minimize Zp(w)exp{-Zca.,o E z(i,w(t),t- 1)}
wenl t=1 iECwt

subject to:
X (i,0) - E x(i,i,O0) = 0, i= 1.,N

Sz(ij,t-1)- E z(j,k,t)-0, j=1,...,N and t=1,...,T-1

z(i,j,t)> O, i,j=l,...,N and tf0,...,T-1

As Stewart observed, the objective function for RP is convex, and the constraints are those of a network.
The integer problem (IP) is identical to RP except that each z(i, j, t) must be either 1 or 0.

When the target motion is Markovian with transition matrix P = [Rj], the objective function of RP
can be written

minimize r(1)PIP 2 ... Prl, (1)

where ir(1) is a row vector of the target's initial distribution over the search cells C (assumed to be known),
1 is a column vector of ones, and P, is the target transition matrix P with each row i multiplied by
exp(-aiX(i,t)). The matrix Pt is substochastic and updates the (defective) target distribution for the
search in time period t and the target transition into time period t + 1.

2
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As Brown [1980] pointed out, the objective function (1) can be written by conditioning on the target's
cell in time period t. Specifically,

Er(J,t)exp{- E az(i,j,t - 1)}s(j,t), (2)
j=1 iecj

where r(j, t) is the probability of the target reaching cell j in time period t without being detected by searches
in time periods 1,2, ...,t - 1; and s(j,t) is the probability of a target which starts in cell j in time period t
surviving the searches in time periods t + 1, ..., T. Both r(., t) and s(., t) are easily calculated from r(., t - 1)
and s(., t + 1), respectively. The recursions begin with r(i, 1) = iri(1) and s(i, T) = 1, for all cells i.

The importance of expressing the objective function as in (2) is that it allows a convenient calculation
of the gradient. If f(x) is the objective function, then elements of the gradient Vf(x) are

Of(x) -ajr(jt+ 1)exp{- Z aiz(k,j,t)}s(j,t + 1).
Oz(i, j, t) - kECj

Note that all gradient elements are nonpositive, since increasing the search flow along any arc can not increase
the probability of missing the target.

3. Solving the Relaxed Problem

Stewart solves RP essentially as suggested by Frank and Wolfe [1956]. That is, starting with a set
of feasible search flows x1, the gradient Vf(xi) is computed. Then x' is found by minimizing the linear
constraint Vf(xl)x subject to the network constraints of RP. An improved, feasible set of flows x2 is then
found by searching along the line segment [xl, x']. The process continues, generating an improving sequence
of flows x1 , x2 , X3,... until a stopping criterion is met.

Stewart's solution procedure for RP is particularly effective for the search problem presented here for
two reasons:

1. Since this is a single-searcher problem, arc capacity constraints (allowed by Stewart) are not neces-
sary. Also a single initial search cell is specified, rather than a search effort distribution over several cells.
Consequently, the linear subproblem reduces to an acyclic, shortest path problem-perhaps the simplest of
all nontrivial linear programs to solve. The solution can be obtained by dynamic programming in polyno-
mial time (each arc is examined only once) and does not require a general network solver. We note that the
network is acyclic because each arc connects a time t node to a time t + 1 node.

2. At each iteration, the Frank-Wolfe method produces a lower bound for the optimal RP objective
function value. In particular, if x, is the current feasible solution to RP, and x" is the optimal solution,
then by the convexity of (x),

f(x') > f(x.) + Vf(x.)(x* - x.).

And since x'n minimizes Vf(xl)x over all feasible lows x,

f(x') > f(x.) + Vf(x,.)(x" - xn).

For convex program with bounded feasible regions (as we have here), Frank and Wolfe (19561 showed that
this lower bound for f(x*) becomes exact as x. approaches x'. The bound is important since a lower bound
to IP (which is provided by a lower bound to RP) is required for the branch-and-hound solution of IP.
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4. Solving the Integer Problem

Stewart [1979] and [1980] gave a branch-and-bound algorithm for IP. The only change suggested here is
the use of RP for fathoming. There are, however, at least two important implementation issues. First, when
using Stewart's procedure to solve a particular instance of RP, the Frank-Wolfe steps need continue only until
branching or fathoming criteria are met. In particular, let PBEST be the branch-and-bound procedure's
current best (i.e., smallest) objective function value for an integer solution. Then during the solution of RP,

1. If the lower bound to RP (f(x.) + Vf(x,)(x. - x.)') becomes greater than PBEST, the current
branch is fathomed.

2. If the upper bound to RP (f(x,)) becomes smaller than PBEST, then fathoming is impossible, and
.the procedure must branch one time period deeper into the enumeration tree.

3. If the difference between the current RP upper and lower bounds (Vf(x,)(x' - x.)t) becomes less
than some specified c > 0, then the procedure branches.

A second observation is that each x,, which is an optimal solution to a linear subproblem, is an extreme
point of the feasible region for R.P. Each x4 is thus integer-valued and a feasible solution to IP. These
solutions can be used to obtain an initial, integer starting solution and to continually update PBEST in the
branch-and-bound procedure.

6. Computational Results

In Eagle [1984a], a 9-cell, 10-time period problem was reported solved to optimality using dynamic
programming, and requiring 19.3 CPU minutes on a mainframe computer. This same problem required 2.5
CPU minutes using the branch-and-bound procedure presented here. (The comparison is not entirely fair
since the dynamic programming solution was, essentially, for all possible initial target distributions. Once an
optimal solution was obtained for any initial target distribution, only an additional 1.5 CPU seconds were
required to obtain an optimal solution for any other initial target distribution.) A few larger problems have
been attempted. A 25-cell, 10-time period problem required 3.15 CPU minutes; and a 49-cell, 10-time period
problem required 4.7 CPU minutes. All computations were done in Fortran 77 on the Naval Postgraduate

School IBM 3033 mainframe computer.
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